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Abstract

Inverse kinematics is computationally expensive and can result in significant control delays in real time. For a
redundant robot, additional computations are required for the inverse kinematic solution through optimization
schemes. Based on the fact that humans do not compute exact inverse kinematics, but can do precise position-
ing from heuristics, we developed an inverse kinematic mapping through fuzzy logic. The implementation of
the proposed scheme has demonstrated that it is feasible for both redundant and nonredundant cases, and that it
is very computationally efficient. The result provides sufficient precision, and transient tracking error can be
controlled based on a fuzzy adaptive scheme proposed in this paper. This paper discusses (1) the automatic
generation of the Fuzzy Inverse Kinematic Mapping (FIKM) from specification of the DH parameters, (2) the
efficiency of the scheme in comparison to conventional approaches, and (3) the imlplementation results for
both redundant and nonredundant robots.
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1 Introduction

One of the major problems of robot manipulator control today is that of calculating inverse kinematics in real
time. Calculating inverse kinematics is computationally expensive and generally consumes a large percentage
of time in the real-time control of robot manipulators.

The problem of inverse kinematics may be summarized as follows: Given the 6xl position/orientation vector r
of the end-effector in Cartesian space, calculate the nx 1 vector of joint angles E required to place the end-ef-
fector at the desired position and orientation. Here, n represents the number of degrees of freedom (DOF) of
the manipulator. In general, inverse kinematics does not result in one-to-one mapping between Cartesian and
joint space, and closed-form solutions to the inverse kinematic problem exist only for a very small class of ki-
nematically simple manipulators [2].

In the case of redundant manipulators and nonredundant manipulators in singular configurations, the problem
is compounded by the fact that throughout the workspace of the manipulator, multiple solutions (perhaps even
an infinite number of solutions) exist. The inverse kinematics of redundant manipulators therefore requires that
a choice be made among the set of all possible solutions. Arriving at such a decision through some optimiza-
tion scheme is difficult and the time-consuming computations can result in sigrificant control delays.

Humans do not, however, have to calculate exact inverse kinematics every time we move an arm or a leg. Ex-
perience and knowledge, rather than complex computations, allow humans to effectively move with ease. In
this paper, we propose to characterize this human knowledge by proposing a general method of computing the
inverse kinematics for an arbitrary n-DOF manipulator through a fuzzy logic approach. The method applies
equally well for redundant and nonredundant manipulators, is computationally efficient, and robust at or near
singular configurations. The scheme has been implemented in the real-time control of a teleoperated space ro-
bot [7], and the results have shown that the scheme is very efficient, especially in teleoperation.

In this paper, we f'rst present an algorithm which automatically generates the fuzzy model for an arbitrary ma-
nipulator based only on the Denavit-Hartenberg (DH) parameters [2]. Second, we analyze the generated fuzzy
model characteristics and present a very efficient method of indirectly calculating the fuzzy model output.
Third, we present simulation results for two redundant and one nonredundant manipulator. Fourth, we analyze
the computational efficiency of our method and compare it to other current methods for computing inverse ki-
nematics.

2 Fuzzy Model Generation

2.1 Overview

As shown in Figure 1, our fuzzy inverse kinematic mapping (FIKM) takes as input the actual and desired loca-
tions of the end-effector, and the current joint variable values. From these inputs, the fuzzy controller generates
as output the necessary trajectories for the joint variables, so that the actual and desired end-effector locations
converge to zero steady-state error.
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rd + r FIKM Odsr Robot Manipulator

• [Forward

Figure 1: The overall signal flow for the fuzzy controller.

The Jacobian matrix J (e) relates the differential Cartesian rates dr to the differential joint rates dO, such that

dr = J(B)dO (Eq. 1)

Essentially, we want to solve the inverse problem to (Eq. 1), namely,

dO = .r'(e) dr (Eq. 2)

There are many reasons why we cannot solve (Eq. 2) analytically, however. First, J-1 (8) exists only when n
= 6, and therefore is not suited for redundant manipulators. Second, even when we can solve for r' (8), the
solution will degenerate at and near singularities. Third, the computations involved in inverting a 6x6 matrix in
real time are time consuming. Although there are some algorithms available, as in [5] and [6], the computa-
tions are still complex. Therefore, we propose a fuzzy logic approach to solving the problem. Figure 2 outlines
the overall algorithm we use to generate the fuzzy mapping automatically, with only the DH parameters as in-
put to the algorithm.

Consider each Jij term in the Jacobian separately along with dr1 , the ith component of the dr vector. We de-
fine a new variable dAii which relates dri and ij,

JijdO0 ii dri (Eq. 3)

Therefore, do.. relates how much dO. contributes to drs. This relationship gives a good understanding of

which joints will contribute more to reducing dri and which ones will contribute less. Thus, with proper scal-
ing of each of the dOei's the fuzzy mapping can arrive at an intelligent set of joint angles that will drive the
end-effector to the desired position. The function that we will actually apply the fuzzy mapping to is given by,

d .... (Eq. 4)

The following sections discuss in detail each of the steps described briefly in Figure 2.
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J Denavit-Hartenberg
epparameters

Calculate the Jacobian

matrix J(().

Determine the minima andmaxima for each of the Jij
elements of J(O)).

Generate p input/output data I

L vectors (dri , Jij, dOij).

LApl fuzzy mapping to the I
relat on: dOij =-, dri 1Jij

Cobine weighted dO~j terms to ]

form the d~i terms. I

Complete,

Figure 2: The flowchart illustrates the overall algorithm that was used to generate the fuzzy model, giv-

en aely the DH parameters as input.

2.2 Jacobian Calculation

There are many ways of calculating the Jacobian. of which a computationally efficient one is the most attrac-

tive. We briefly describe one such efficient method below [6]. First, divide the Jacobian matrix into 2n subma-

trices:

J= IJ' "' J'•(Eq. 5)

UJ21-. ~

Each of the submatrices in (Eq. 5) are 3 x I column vectors.
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The J,,, i (1, ...,n), vectors may be calculated recursively from the base towards the end-effector, by apply-
ing the following iterative scheme:

J0= [0 0 0T

"ýjii = "- (i -1)+RiiP( i {1,2,..., n-1) (Eq. 6)

i ý= -J 2 iXJl(i -l) iE {1,2,...,n}

where 0Ri denotes the rotation transformation from link i to link 0. The J2j, i E 11, ....,n), vectors may be calcu-

lated recursively from the base toward the end-effector, by applying the iterative scheme,

OR= ° o o JT (Eq. 7)

The resultant J (3) is expressed in the base frame of the manipulator.

2.3 Range Determination

In order to minimize the inference error of the fuzzy model, we want to fuzzify relationship (Eq. 4) over the
full range of values that Jii may assume. Therefore it is useful to determine, before the fuzzy mapping, the
rap-,e for each element , i 1...e 6), j e (1 ... ,n I, in J (O). Each l5  will be of the form,

J.. = 11f 1(0 1 .... O, + I2/2(e 1 ..... O + ... + I1,O I I..... O) + dr + ,(O 1.... 0) + "... + d,,f+,.(O1 .... I ) (Eq. 8)

where each tI, i e 1 ... , k) , is a constant, each di, ie 1{ ... , m < n} is an offset distance in the DH param-

eters which may be variable, and each of the/f(81 .... O), i k. + m}, is a product of sine and cosine

terms. Note, of course, that any (or all) of the coefficients d, and 1i may be equal to 0 or 1.

The maximum and minimum values for the cosine and sine functions are Vx e {-*, **},

sin(x) in = -

cos (x) =-1 (Eq. 9)
sin (x) max = 1

cos (x) max = 1

Therefore, it follows that for 0!5i<22n, ie r 1 ... , n}, the maximum and minimum values for each

Je.( ..... 0) are,

f4( 91  ... I. . II (E q . 10)

f4(0 1 .... n) = 1.
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In addition, for a given manipulator, we also know the range of allowable values for each variable d, a priori.
Then, the minimum and maximum values for each Jo', are,

R in

I q=1 (Eq. i1)

Jij-a = IJij-inl

so that Ji.i.!g Jij:5 Yia. for all possible 9i and di.

2.4 Generation of Input/Output Data Table

In preparation for generating the fuzzy model, we require that a table of input/oulut data be generated for each
dO... Each input/output vector in the table must be of the form (dri, Jii, dO.i) where, of course, dri and Ji. are
considered the inputs and dO is the output of the fuzzy model.

For the fuzzy mapping presented in this papei, we generated the input/output data by computing a table of vec-
tors of the form,

P (i i dO i, Jij' dO ij) (Eq. 12)

where J.j was swept from Jij.in to jmaz in Jim1 /1000 increments, and dO.i was swept from -O.l/Jijm.. to

0. I/J,,.a in O.0 4 /J1iija increments. Therefore, the ranges for the input variables were,

-0.1 :dri<O.1 (Eq. 13)
JijMiX!5 J ii 5• Jqja. F.q 3

The range for dr, indicates our expectation that the end-effector will move less than 10 cm (0.1 m) in each di-
rection per control cycle. We later see that we can expand the range for dri without any loss in accuracy.

This approach for generating the table avoids the problem of the singularity at J, =0, had the input/output data
been generated by vectors of the form,

( J dr,•-d (Eq. 14)

Repeated points in the input/output table were eliminated before the table was used to generate the fuzzy mod-

el.

2.5 Generation of Fuzzy Model

Figure 3 outlines the algorithm that was used to generate the rule base and membership functions for the
de's. A similar approach for generating the fuzzy model can be found in [1]. The algorithm takes as input the

table of input/output data generated in the previous section.
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Input/Output Data

Initilze membership functions
ford~ri and J~i and set p = 0.

I
Setp=p + 1. Read in mpt vector o
input/output data (dri , J , d8ij

Determine fuzzy reasoning for
dtjj and update rule base.

Eindo1/0<emaf YENOCmle

YES YES

Calculate einf for regions divided by
adjoining membership functions and
generate a new membership function
and new rules in the region with the

large*: inference error.

Initializep = 1.

Figure 3: Detailed algorithm for generating fuzzy mapping for do.

Initially, we generate three evenly spaced membership function per input variable, i.e., dri and Ji4, for the
ranges that were determined previously. Figure 4 shows the initial arrangement of the membership functions

for Ji" Note that the sum of the membership functions at each value for J4, add up 1. The initialized member-

ship functions for dr, are equivalent except for the range of dri.
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Initial Membership Functions for Jij

1.0 UAA
M2A 2B M2C

0.0

Jijmin 0 Jijmax

Figure 4: These were the initial membership functions that were used for J8 ". Similar three membership
functions were used for dri.

Let Ndri = current number of membership functions for dri, and N,,, = current number of membership func-
tions for dA i. Denote MIX, x E (A, B, ... I}, as a membership function of dri and denote M2Y, y EA,{ B, ... ),

as a membership function of JW,. Also, let MI.. = MIX, me (1,2 .... NdrI}, and M2,. = M2y,
m E ( 1, 2 ... , Njij}, where m denotes the x)osition of the mth letter in the alphabet.

The initial rule base for the fuzzy control model takes the following form where Rk denotes the kth rule:

R°: If dri is MIA and Jj is M2A then dA j is wo.

R': If dri is MIA and Jij is M2. then dO.i is wj. (Eq. 15)

RN-': If dr, is MIC and Jj is M2C then de5, is WN_ .

Here, N = total number of rules which is equal to 9 at initialization. In general,

N = Ndri x N,ij (Eq. 16)

R -) +r-I: dri is MIq and Jqi is M2,, then deij is W(q-I)N ,,+rI (Eq. 17)

We further initialize the real numbers of the consequent part Wk,, k E 0 .... N - I }, to 0, and the maximum in-
ference error e.., to 0.0013. This number was arrived at iteratively after tries with various different stop val-
ues. When the inference error e,.f < e.,o,, then the fuzzy model is complete to desired specifications for that

dO i,.



page 8

Furthermore, we set a minimum threshold value Ae.,,1  = 5X1-F 6 for the change in the inference error in con-
secutive iterations of the algoritun. This is used to decide whether or not to further reduce the inference error
without generating new rules. If Aei.! > 0 or IAema < IAei.A then a new membership function and new rules
will be generated; if not, then further reduction of einf will be accomplished by adjusting wk with repeated

reading of the input/output data.

For each new input/output data vector p, we first calculate the truth value ;I, for each of the rules for that par-
ticular combination of inputs. For example,

Ito = MIA (dr) pM 2 A (Ji j ) p

R,= MIA (drd) pM 2 (Jij) p

IL2 = MIA (dri) pM2C (Jij) p (Eq. 18)

I93 = MIB (dri) pM 2 A (Jij) p

94 = etc...

Second, the output (dA 1) * of the fuzzy model is calculated by,

N-I

(dOii); = 1 Igkxwk (Eq. 19)
k=O

The real numbers of the consequent part wk are updated by,

Wk =k cw9k I (dO i) *P - (A i) P (Eq. 20)

where c. = 0.6. This value was determined experimentally, and increases the speed of convergence to the

smallest possible inference error with the least number of additional rules and membership functions being
generated.

Once, the end of the input/output data has been reached, the average inference error is calculated by comparing
the fuzzy-model output with the actual output for every input/output data vector,

einf = p--" Xp1l (dOij)* P'- (dO..) (Eq. 21)

Furthermore, the change in the inference error from the previous cycle is also calculated,

= new eold
ein in - (Eq. 22)

As can be observed from Figure 3, if eff < emo, = 0.0013, then the fuzzy model is complete. If the negative
change in the inference error is still significant without generating new membership functions, the Wk are re-
fined more by reprocessing the input/output data table. If, however, the Aeinf is positive or negligibly negative,
then new membership functions have to be generated in order to further reduce the inference error. Figure 5
shows by example how new membership functions are generated and how consequently, new rules are formed.
First, the dri -J,, plane is divided into (Nd,i - 1) x (Njij - 1) regions. The region borders are generated where
two adjoining membership functions meet. The top part of Figure 5, for example, has region R11 shaded. Sec-
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ond, the inference error is calculated for each region. This is done by summing up only those terms in (Eq. 21)
for the p where (dr) P and (J,) P fall within that specific region. We then select the region R... with the
greatest inference error where a new membership function is to be generated. Figure5 assumes that region Rn
=Rm

Jik=2 k=5 k=8

R1M2B % • k -I , k =7R20[

M2 %k=O , k=6

MIA MIB M1C

RIO RI,

'• k=2 k= ll kJ

M~~a / 1. ,= 2 ,k2=

R2 0 M 2 c

LM 2A % = = 7k1

MA M ,B MIC MID

R 0  R11  R12

Figure 5: A new membership function is generated by splitting the region where the inference error is
the highest. In the above diagram, the shaded region is assumed to have the largest error.

Rma, will be divided into two equal halves as is shown in Figure 5 if both of the resulting regions contain at
least one data vector in the input/output data table. If all input/output data is concentrated in one half of R..,,
then, however, no reduction of ein! would occur by splitting the region into two equal halves. In this case, the
half of R..,, that contains all the data points would be divided into equal halves so that R., would be divided
into two regions of 1/4 R,,x and 3/4 Rm,,. Here, it must be verified again that both resulting regions contain at
least one data point. Otherwise, the above procedure would be iterated again.
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When a new membership function is generated for dri, then Njij new rules are created. Similarly, when a new
membership function is generated for Jij, then Ndi new rules are created.

The wk for the updated rules corresponding to Rk will be weighted averages of the adjoining rules. In Figure 5,
for example,

W old

w= 3 2 6 (Eq. 23)

w6d • w9 (Eq. 24)

In general, when the newly generated membership function Ml,, is created for dri, then the updated w.'s will

be,

fnew oldwN,j (q - 1) = • ( WNj, (q- 2) + WN% C(q- I)) (Eq. 25)

woldN s#j(q _- 1) --+ W N sjq q : { re m + 1_....m + NjijJ

Similarly, when the newly generated membership function M2,. is created for Jij, then the updated Wk's will

be,

rWw oldwq•N+= + (WqN.,.,m_ - + WqN,,L.+ ) (Eq. 26)
Weld q 0 ,I

qN +m-4 WqN,t+m+ I qE ... Nl}

Now, the input/output data must again be processed to adjust the wk so as to reduce ei.f. This procedure is re-
peated until eiof is reduced to 0.0013 for the fuzzy model output do.V

2.6 Scaling of Fuzzy Model Output

The values for do.. j r { 1 ... , n} , must be derived from the 6n dO.. terms. Define the following terms:

r i = I JJij Vi E (1. 6) (Eq. 27)
j=l

6

cj = , IJJl Vj e {l. n} (Eq. 28)
i= I

Thus, ri is the sum of the absolute values of the terms in the itA row of the Jacobian, and cs is the sum of the
absolute values of the terms in the jth column of the Jacobian. Now, scale each of the dOi terms by row and
column and form the effective joint angle by,

do, [ i x iJide.d (Eq. 29)
Ci•lr .
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This choice of scaling the individual do.. ensures that (1) dO. will not be too large, and (2) the joint angles that

can contribute the most to the motion in a given dri direction will in fact contribute the most [7].

2.7 Further Modifications

We further modify our scheme to improve performance in two ways: (1) Reduce the tracking error by intro-
ducing an adaptive fuzzy gain, and (2) Detect and suppress certain types of oscillations. The modifications
themselves also apply fuzzy logic.

If the tracking error becomes too large, we would like the fuzzy controller to correct the problem quickly. This
can be done by amplifying the error dr by a gain K so that the fuzzy model will take greater corrective mea-
sures than the error itself would prescribe. If, however, the error grows very large, there may be a potentially
catastrophic problem and the fuzzy controller should proceed cautiously. Also, if oscillations are detected, this
may be an indication that the gain K is too large and the fuzzy controller should once again proceed with great-
er caution.

Oscillations in our modified scheme are detected by monitoring sign changes in the dO j . { 1 ..... n). We
monitor the previous ten values for each of the d0,, and suspect oscillatory behavior when 4 or more sign
changes occur.

Table I. Rule Base for Adaptive Gain/Oscillation Detection

K S M B

OFF 1.00 2.60 0.80

ON 0.10 0.40 0.03

Figure 6 and Figure 7 show the membership functions we use to achieve an adaptive gain in order to control
the tracking error and oscillations. Table I shows the rule base we use for the membership functions in Figure
6 and Figure 7.

Error Membership Functions Oscillation Detection

B M S M B OFO

0.8 0.8

0.6 0.6

0.4 0.4

0.2 02

0 Idag 0 osc

.1 -0.5 0 0.5 1 0 1 2 3 4 5

Figure 6: Membership functions used to select Figure 7: Membership functions for detecting
an adaptive gain based upon the average track- oscillations. When 4 or more of the last 10
ing error over the last 10 sample periods, dO.'s have changed sign, we consider oscilla-

itions to be "ON".
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The membership functions in Figure 6 have a dynamic range based on the average error, davg for dri over the
last ten control cycles. In other words, if the present error is greater than the averaged error over the last ten cy-
cles, we consider the error big ("B"). All other errors are considered medium ("M") or small ("S"). Note from

Table I that we suppress the gain K significantly when oscillations are detected.

Finally, we apply two low-pass filters to the input of the fuzzy model. First we apply low-pass filtering to the

gain K,

1 2
KaPPlicd =- 3fuzxy + " Kapplied, previous (Eq. 30)

Second, we apply low-pass filtering to the resulting dri,

1 2dr. = -Kdr. + 2dr.r(Eq. 31)

These two measures provide additional oscillation protection.

3 Fuzzy Model Characterisistics

The algorithm that we use to generate the fuzzy model for the d0% produces 3 membership functions for dri

and typically 15 membership functions for Jij. Figure 8 shows the membership functions generated for dri,
and Figure 9 shows the membership functions generated for a typical case of J,,, where ii varies from -1.5 to
1.5.

Figure 10 shows a plot of the function that the fuzzy mapping was applied to, namely (Eq. 4). Since doi% varies
linearly with dri, eif could not be decreased by inserting more membership functions for dr1 . However. dOI.
has a strong nonlinear dependence on Ji, near Jij = 0 (Figure 10). Hence, that is where the most membership
functions are generated, as can be seen in Figure 9.

Table II shows the rile base that was generated for the above case. A total of 15x3 = 45 rules were generated.
Thus, the generated fuzzy model is relatively simple.

As was note previously, we can trivially extend the range of fuzzification for dri. Suppose that instead of as-
suming that dr, varies from -0.1 to 0.1, we let dri vary from -0.2 to 0.2 in the fuzzy mapping. Then the wk in
the rule base are adjusted by multiplying each wk, k E { 0, 1 ... , 44}, by 2. This can be done without loss of ac-

curacy, since dO,, is linearly related to dri.

Table H.Rule Base Generated for dO..

4 M2A M2B M2c I M2D M2E M2 F M2G M 2 H A M21 M2J M2K M2L M2M M2I M20

0.0667 0.1163 0.25021 0.4749 1.1398 1.5197 1.6174 -1.7134 -1.6174 -1.5197 -1.1398 -0A749 -0.2502-0.1163 -0.0667

M -0.0 -00.006 0.00001 0.47004 J-.1398 -. 597 0 .0000 1 0 .0000 0 .0000 1.5197 1.1398 0.0000 0.0000 0.0000 0.0000

M .0.0667 -0.1163_ -0.25021-0.4749 1 -1.13" 1 J.1.5197 -1.61741 1.7134 1.6174 1.5197 1.13" , 0.4749 0.5 2 M N
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Generated Membership Functions Generated Membership Functions
1 1

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0 A dri C Jij
-0.1 -0.05 0 0.05 0.1 -1.5 -1 -0-5 0 0.5 1 1.5

Figure 8: Membership functions generated for Figure 9: Membership functions generated for
dr1 . JiJ.

Function to Fuzzify

0.75

0.5
03

-•. 025

"• -0.25

-0.5

-0.75

.-1 -0.5 0 05 1 15

Jij

dri

Figure 10: The nonlinear equation dOi, = - for dri = 0.1. Comparing Figure 10 to Figure 9 clearly
hi jshows that the most membership functions are generated at the region of highest nonlinearity.
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4 Simulation Results

4.1 Efficient, Indirect Calculation of Fuzzy Model Output

The fuzzy model we have proposed thus far provides an intuitive basis for our approach and may be calculated
directly with relative efficiency. As we demonstrate below however, (Eq. 32) leads to an alternate, indirect
method of evaluating the fuzzy model which is roughly three times as efficient as direct evaluation of the

fuzzy model.

Observe that in the scaling of the dOj terms, each d0% is multiplied by KJj2. Furthermore, note from (Eq. 4)

dr.
that dO9 i -- is the relation we originally fuzzified. We now propose to include the scaling multiplication of

Jo

JJh]2 in the fuzzy mapping so that,

1d=J5
2dr1 J=i2driij -- ---- =Jidri (Eq. 32)

t6 d

d0- = Viri*O,c,*O (Eq. 33)

dO =. 0 ci = 0 (Eq. 34)

(Eq. 32) no longer degenerates for any value of iJi andriand is equivalent to calculating the fuzzy mapping di-

rectly. (Eq. 32), (Eq. 33), and (Eq. 34) provide an extremely efficient and robust algorithm for calculating the
fuzzy inverse kinematic mapping of any redundant or nonredundant manipulator. The computational efficien-
cy of (Eq. 32) through (Eq. 34) for calculating inverse kinematics will be evaluated and compared to other
methods in a later section.

4.2 Simulation Implementation

We implemented the fuzzy model generator described in Section 3. For calculating J (9) and determining the

range of each element Ji, in the Jacobian matrix, we use Mathematica, the symbolic math processing lan-
guage. There, it is fairly straightforward to calculate (Eq. 6), (Eq. 7), and (Eq. 11). The remaining steps in Fig-
ure 2 are implemented in the C programming language, where the output from Mathematica is linked to C

subroutines.

Then, we perform two different types of simulations. In the first case, we give as input to the fuzzy model only
an initial value for 9 and a final desired position. We then let the manipulator move by repeatedly updating 8
so as to reach the final position. In the second case, we give as input to the fuzzy model an initial value for 0,
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and a series of position data points that define the desired trajectory. Here, we update E once for every new
data point. That is, the sampling frequency f, is equal to the control frequency f,. For the simulations present-
ed in this paper, we assume,

= =50 Hz (Eq. 35)

All simulations were run using both the direct and the indirect method for calculating the fuzzy model. Results
are nearly identical for both calculation schemes, where slightly smaller tracking errors and faster error con-
vergence are observed for the indirect scheme. For the results presented below, the indirect, more efficient
method of calculating the fuzzy model was used. All simulations were plotted in Mathematica.

Below, we present simulation results for one simple non-redundant manipulator, and two redundant manipula-
tors. Tables III, IV, and V list the DH parameters for a planar, two-DOF manipulator, a planar, four-DOF ma-
nipulator, and a seven-DOF manipulator, respectively. These manipulators were used in the simulations
presented below. All a, and 0, are in units of radians (rad), and all a, and di are in units of meters (m).

Table m. DH Parameters for a 2-DOF Manipulator

1 0 0 0 Of
2 0 1.0 0 2
3 0 0.5 0 0

Table IV. DH Parameters for a 4-DOF, Planar Manipulator

i ;.i-] ai-! di __i

1 0 0 0 Of
2 0 0.50 0 Og

3 0 0.45 0 03
4 0 0.35 0 00
5 0 0.20 0 0

Table V. DH Parameters for a 7-DOF, 3D Manipulator

i OWi._ ai__ di Oi

1 0 0 0 o1
2 n12 0 0.2 2

3 -vJ2 0 0.2 03
4 ir/2 0 0.2 04
5 -ir/2 0 0.2 05
6 Nra2 0 0.2 06
7 -702 0 0.2 67
8 0 0.2 0 0

4.3 Single, Large-Step Tracking

Below, we present results for the first type of simulation, which requires the fuzzy mapping to generate joint
trajectories given only the initial and target position of the end-effector.
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4.3.1 Two-DOF, Planar Manipulator:

Here two position coordinates (x, y) are mapped to two joint angles (O, 02). Hence there are no redundant
DOF's and the dimensions of J(0) are 2x2. When (0r 02) = (0, 0), the end-effector is located at (1.5 m, 0.0

m).

For this simulation run, we ask the fuzzy mapping to generate the joint trajectories required to go from a posi-
tion of (1.5 m, 0.0 m) to (0.0 m, 1.5 m). Note that both the initial and final positions specified are singular con-
figurations for the manipulator. The simulation time is specified to be I sec.

Figure 11 shows the resulting trajectory generated by the fuzzy mapping. The manipulator converges to within
1 mm absolute error in 1 sec. Numerous other large-step trajectories were simulated with equal or better re-
sults. The steady-state position error always converges to zero.

4.3.2 Four-DOF, Planar Manipulator:

Here two position coordinates (x, y) are mapped to four joint angles (Op, 02, 03, 04). Hence there are two re-
dundant DOF's and the dimensions of J (8) are 2x4. When (01, 02' 03' 04) = (0, 0, 0, 0), the end-effector is lo-
cated at (1.5 m, 0.0 in).

For this simulation run, we ask the fuzzy mapping to generate the joint trajectories required to go from a posi-
tion of (1.5 m, 0.0 in) to (0.0 in, 1.0 in). The simulation time is specified to be 1 sec.

Figure 12 shows the resulting trajectory generated by the fuzzy mapping. The manipulator converges to within
0.1 mm absolute error in 1 sec. Numerous other large-step trajectories were simulated with equal or better re-

sults. For all attempted large-step trajectories, the steady-state position error converges to zero.

4.4 Multiple, Small-Step Tracking

Below, we present results for the second type of simulation, which requires the fuzzy controller to track a de-
sired trajectory. In each case, the simulation runs for tI + 0.4 seconds, where 'I denotes the duration of the tra-

jectory, and 0.4 seconds is the steady-state time that we allow the manipulator to converge to the desired
position. In all trajectory plots, the solid line represents the generated trajectory and the dotted line represents
the desired trajectory.

4.4.1 Two-DOF, Planar Manipulator:

For this simulation, we require the manipulator to follow a curved pathwith the following characteristics:

l = 3.99m t 6s i, 662m (Eq. 36)
=
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Manipulator Position Manipulator Position

1.4 1.4"

1.2 1.21

I 1

0.8 0.8.

0.6 0.6

0.4 0.4

0.2 0.21

00
0.2 0.4 0.6 0.8 1 1.2 1.4 0.2 0.4 0.6 0.8 1 1.2 1.4

x (in) x (Mr)

Figure 11: Trajectory generated to move from Figure 12: Trajectory generated to move from an
an initial position (1.5 m, 0.0 m) to a rinal initial position (1.5 m, 0.0 m) to a f'mal position
position (0.0 m, 1.5 m) for a 2-DOF (0.0 m, 1.0 m) for a 4-DOF manipulator.
manipulator.

where = length of the path, and average speed of the trajectory. The results of the simulation are
shown in Figure 13, Figure 14, and Figure 15, with,

emax = 2.27cm e = 0.61cm es = 0.00cm (Eq. 37)

where emax = maximum deviation from the desired path, e = average deviation from the desired path, and
e,, = steady-state error after t, + OA. seconds.

As may be observed from Figure 13, the desired trajectory is tracked very closely by the generated trajectory.
Part of the instantaneous error in Figure 14, therefore, is partially due to a small time lag. Also, note from Fig-
ure 15 that the generated joint paths appear to be smooth functions of time. We examine the joint paths more
closely for the redundant manipulators.

4.4.2 Four-DOF, Planar Manipulator:

For this simulation, we require the manipulator to follow a curved path with the following characteristics:

lpagh = 3.63m t1 = 3s v= 1.21m (Eq. 38)
S

The results of the simulation are shown in Figure 16, Figure 17, and Figure 18, with.

e... = 3.49cm e = 1.06cm e,, = 0.00cm (Eq. 39)

Note from Figure 18, that the joint angle trajectories are smooth functions of time with little or no acceleration
after the start and before the end of the motion.
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Tracking Error vs. Time

1.2 - 0.01.! -- ,oo15

S0.0125-

-0.8 0.0o-

0.4 0.005 A ,.,

0.2 0.00.2

-. 0 0.5 1 1.5 0 1 2 3 4 5 6

x (M) time (sec)

Figure 13: The desired and actual trajectories Figure 14: Instantaneous error between the
for the 2-DOF manipulator. Note that the two desired path and the actual path generated for
trajectories are so close that they completely the 2-DOF manipulator. Note that the
overlap, maximum error occurs early in the simulation.

Manipulator Position

1.4
1.2

S0.8

•"0.6

0.4

0.2 Figure 15: The generated trajectory of the
0 -0_ o o0. 1 1- fuzzy controller chosen to follow the desired

g (Mn) trajectory.

4.4.3 Seven-DOF, Manipulator:

Here, we present simulations for position tracking of a seven-degree of freedom robot, whose DH parameters
are given in Table V. Here three position coordinates (x, y, z) are mapped to seven joint angles
(OP 02,3, 04, e5, 06, 07). Hence, there are four redundant DOF's and the dimensions of J(8) are 3x7. When

(0,, 02 03, 04' 5, 06 07) = (0, 0, 0, 0, 0, 0, 0), the end-effector is located at (0.2 m, -0.6 m, 0.6 m). We chose
not to include orientation racking for the end-effector for simplicity and in order to demonstrate tracking for a
hyper-redundant manipulator.

For the first simulation, we require the manipulator to follow a complex path with the following characteris-

tics:

Ipath = 5.28m II = 12.6s =2 (Eq. 40)

The results of the simulation are shown in Figure 19 and Figure 20, with,

e..ý, = 1.98cm e = 0.70cm e,, = 0.08cm: (Eq. 41)



page 19

Manipulator Position Error vs. Time
2 0.035 -

0.03-
0.025

-C 6~ 0.02- - - -

" 0.6 o.o -.0,

0.4 0.01- 1- -

-0.5 0 0.5 1 5 0 0-5 1 1-5 2 2-5 3

X (M) time (sec)

Figure 16: This is the path that the fuzzy Figure 17: Instantaneous error between the
controller chooses for the 4-DOF manipulator, actual and desired paths for the 4-DOF

manipulator.

• h4a1)_ _

--° - - I - T -

007

o •I °1,:I

02 1 2 30 0

OI0'p° - -/
0 - <Figure 18: The joint angle trajectories for

- , the 4-DOF manipulator are all smooth,
0 .. O i : s-2 0 03 1, o - , near constant velocity trajectories.

Trackinl Complex Trajectory Er - Time
0. 0.017S

0- 0.0125

-0.2Z 0.0;--
S0.0075

0.0050 8-01
0.0025 -- \

030 0 2 4 6 ... 8 10 12

time (sec)

S(rP.25 Figure 20: Instantaneous error between the
desired path and the generated trajectory for the
first simulation of the 7-DOF manipulator.

-0.2"

Figure 19: The generated trajectory tracks the desired
0.2. path with good accuracy even through sharp turns for the

x (M) 0.4 7-DOF manipulator.
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For the second simulation, we require the manipulator to follow a curved path with the following characteris-

tics,

tP-th = 31.55cm I =4.s 7.90cm (Eq. 42)

The results of the simulation are shown in Figure 21 and Figure 22, with,

emrax = 0.71cm e = OA5cm e,, = 0.09cm
Error vs. Time

Curved Trajectory 0.007

0.006

-0. 0.005
0 .0 0 4 O l e

t0.003
y (M) •0.002

0 .

0 1 2 3 4

time (sec)

-0.6 Figure 22: Instantaneous error between the
desired path and the generated trajectory for the

0.75 fcurved trajectory in 3-space.

z (m) 0.7

0.65 i

0.6

0.2
0 0.24 Figure 21:Tracking of a curved trajectory in 3-space for a 7-DOF

x (M) manipulator.

For the last simulation of the 7-DOF manipulator, we require the manipulator to follow a straight path with
starting coordinates of (0.2, -0.6, 0.6) and final -.oordinates of (0.7, -0.35, -0.15) and the following characteris-
tics:

'path == 93.5cm 11 = 10.Os • 9.35-S (Eq. 43)

The resulting joint trajectories are shown in Figure 23. The various tracking enors for the trajectory are:

em4x = 1.10cm e = 0.59cm e3. = 0.09cm (Eq. 44)
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o, I Figure 23: Joint trajectories for straight line path in 3-space of the 7-
a , a , , DOF manipulator.
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5 Discussion

5.1 Comments on Simulation Results

Here, we note some of the main characteristics about the fuzzy controller performance. First and most impor-

tant, the fuzzy controller produces zero steady-state error. In the simulation results presented in Section 4, all

simulations converged to within 1 mm of the desired position in 0.4 seconds after the desired trajectory had

stopped changing. In all instances, the steady-state error converged to zero in less than 1 second.

The average tracking error is a function of the average speed of the end-effector during tracking and the com-

plexity of the trajectory. The highest average tracking error of 1.06 cm occurred in the simulation of the four-

DOF planar manipulator, where the average trajectory speed was 1.21 m/s. The lowest average tracking error

of 0.45 cm occurred in the simulation of the complex trajectory for the seven-DOF robot. Here the average
speed of the end-effector was only 7.90 cm/s.

To get a better understanding of the relationship between the average speed of the end-effector and the track-

ing error, we simulated the straight-line trajectory for the seven-DOF manipulator at various speeds. Table VI

reports the results. Note that although the speed is increased by 400% from 9.35 cm/s to 46.77 cm/s, the aver-

age tracking error increases by only 78% from 0.59cm to 1.05 cm. The maximum tracking error increases by

279% from 1.10 cm/s to 3.07 cm/s. Also note that the average tracking error for a speed of 46.77 cm/s for the

seven-DOF manipulator is roughly equivalent to the tracking error for the four-DOF planar manipulator at a

speed of 1.21 m/s. This is a consequence of the fact that straight-line paths are, in general, more difficult to

track than curved paths.

Table VI. Relationship Between Speed and Tracking Error

vag ((s = 50 Hz) em.. eav_ ,

9.35 cm/sec 1.10 cm 0.59 cm

18.71 cm/sec 1.57 cm 0.82 cm

46.77 cm/sec 3.07 cm 1.05 cm

The maximum error during tracking occurs in general (but no always) near the beginning of the trajectory,

when the manipulator is still adjusting the joint angles to track the generated path more easily. Furthermore,

the maximum error does not necessarily represent the maximum deviation from the desired path, but may, at

least in part, reflect some time lag.

Note that increasing the speed of the end-effector is equivalent to reducing the control frequency f, and vic

versa. Therefore, the above discussion applies equally well to variations in the control frequency.

Second, we examine the actual joint trajectories generated by the fuzzy controller. Figure 18 and Figure 23

show the joint angle trajectories generated for the four-DOF and seven-DOF simulations respectively. Note

that in both instances, the joint trajectories generated by the fuzzy controller are smooth, non-oscillatory func-

tions of time.
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For the four-DOF simulation, we see that the generated trajectories vary nearly linearly with time. This means

that the manipulator will move at near-constant velocities and little or no acceleration. For the seven-DOF

straight-line simulation, we see that the joint trajectories no longer vary linearly with time but are still smooth

functions of time. Also, the change in slope of the joint trajectories (i.e. the acceleration of the joints) increases

with joints that are further away from the base. The joint trajectories for 05, 06, and 07 exhibit much higher ac-

celerations than do the trajectories for 01, 02, 03, and 04. When given a choice, the fuzzy controller seems to

prefer moving links closer to the end-effector over links that are closer to the base. This is a desirable charac-

teristic in that links that are closer to the end-effector require less torque to move and are easier to control.

Third, the simulations of single, large-step tracking indicate that the fuzzy controller is able to converge quick-
ly to a desired position even when the initial error is very large. If the speed of the desired trajectory should

suddenly change, the fuzzy controller will still be able to overcome any large error without much problem.

Fourth, we note that the simulations were performed near or at singularities at various points in the trajectory.

In all cases, the fuzzy controller proved robust and handled the singularities without much difficulty.

Finally, when the modifications to the fuzzy scheme in Section 2.7 are removed, we observe significant in-

creases in the maximum error, mean error, and oscillations. Schacherbauer and Xu [7] treat this topic in signif-

icant detail for similar input modifications to another fuzzy inverse kinematic scheme. Their results show that

the low-pass filtering applied at the input of the fuzzy controller contributes the most to reduction in error.

5.2 Computational Efficiency Analysis

In order to demonstrate the usefulness of our scheme for real-time control, we analyze the computational effi-

ciency of our method for calculating the inverse kinematics of an n-DOF manipulator. For the development be-
low we restrict the twist angle ai to 00 and ±900.

In each control cycle, J(0) must be evaluated. This calculation will, in general, require at most (30n - 55)

multiplications, (15n - 38) additions and (2n - 2) sine/cosine evaluations [6] for both position and orientation
tracking. Here n > 3.

We now calculate the number of arithmetic operations required to calculate the inverse kinematics once the Ja-

cobian has been determined. From (Eq. 32), one multiplication is required for each Jj term in J(9) to calcu-
late the d6i4's. Hence, to calculate all the d~ij, we require 6n multiplications. From (Eq. 27) and (Eq. 28), a

total of (6n - 6) additions are required to calculate the r, terms, and 5n additions are required to calculate the c,
terms. From (Eq. 33), a further 6n divisions are required per J•,. To form the dA. terms, an additional n divi-
sions and 5n additions are required. (Eq. 32) through (Eq. 34) therefore require,

6n + 6n + n = 13n multiplications/divisions

5n + 5n + 6n - 6 = 16n - 6 additions/subtractions (Eq. 45)

Including the Jacobian calculations, we require a total of,
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43n - 55 multiplications/divisions

3In -44 additions/subtractions (Eq. 46)
2n - 2 sine/cosine function evaluations

Therefore, the computational complexity of this scheme increases only linearly with n. For a general 6-DOF
manipulator where none of the link distance parameters are assumed to be zero, and the twist angles a are as-
sumed to be either 0* or ±9WO, no closed-form solution exists for the inverse kinematics of such a manipulator.
Our scheme, however, would require only 203 multiplications/divisions, 142 additions/subtractions, and 10
sine/cosine evaluations per control cycle. Furthermore, under the same assumptions, for a general 7-DOF re-
dundant manipulator, we require only 246 multiplications/divisions, 173 additions/subtractions, and 12 sine/
cosine evaluations per control cycle.

The Puma 560 manipulator is kinematically very simple in that only the link lengths a2, and a3, and the link
offsets d3 and d4 are nonzero [5]. Because of its kinematic simplicity, a closed form solution for the inverse
kinematics exists. Paul and Zhang [5] determined the minimum number of arithmetic operations involved in
solving the inverse kinematics of the Puma 560. Given the transformation °T6, the required arithmetic opera-
tions are,

37 multiplications/divisions

22 additions/subtractions
2 square root function evaluations (Eq. 47)

6 arctan function evaluations
2 arcsin/arccos function evaluations
4 sine/cosine function evaluations

However, we assume that only the desired position/orientation vector r is given. In that case, additional arith-
metic operations are required to evaluate the OR6 rotation submatrix of 0T6 . In terms of the fixed Euler rotation
angles, °R6 is given by,

Fcaco cas[ps'- sacy caspcy + sas^-

O = sac • .aspsy + cacy saslpcy- cas-y (Eq. 48)6 J
_ so cosy COCY

This will require,

16 multiplications

4 additions (Eq. 49)
6 sine/cosine function evaluations

In total, the closed-form solution will require,

53 multiplications/divisions

26 additions/subtractions
2 square root function evaluations (Eq. 50)
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6 arctan function evaluations
2 arcsin/arccos function evaluations
10 sine/cosine function evaluations

to calculate the inverse kinematics. The Jacobian for the Puma 560 has 15 entries that are equal to 0 [51,

JIllJ2 l3 0 0 0

J21J22J23 0 0 0
J(8) = J31 J32 J33 0 0 0 (Eq. 51)

J41 0 143 144 145 0
151 0 J53 J54 J55 0

s61 0 s63 s64 0 1

The evaluation of 1 (9) requires,

46 multiplications
19 additions/subtractions (Eq. 52)
6 sine/cosine function evaluations [51

The number of calculations required for the inverse kinematics will be only a fraction of the number of calcu-
lations required for a general 6-DOF manipulator since no calculations are required for the 15 zero terms. To
calculate the dOij for the nonzero Ji terms, we require (36-15) = 21 multiplications. Furthermore, 15 additions
are required to calculate the ri terms, and 15 additions are required to calculate the c, terms. The scaling of
(Eq. 32) requires an additional [(36-15)+5] = 26 multiplications/divisions and a further 15 additions. Calculat-
ing the inverse kinematics, therefore requires,

47 multiplications (Eq. 53)
45 additions/subtractions

for the Puma 560. Including the Jacobian calculations, we require,

93 multiplications/divisions

64 additions/subtractions (Eq. 54)
6 sine/cosine function evaluations

To compare the calculations required for the closed-form solution and our fuzzy model approach more direct-
ly, we will make the following assignments for each arithmetic operation in terms of "units of computing pow-
er required,"

I multiplication = 1 unit
I addition/subtraction = 1/3 units
1 sine/cosine evaluation = 5 units (Eq. 55)
1 inverse function evaluation = 7 units
1 square root evaluation = 4 units [2]
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The first two entries in Table VII show that even for the case when a closed-form solution exists for the inverse
kinematics of a manipulator, our proposed method is marginally more efficient. Furthermore, the Puma 560 is

a best-case scenario for conventional inverse kinematics. For only a very few kinematically simple manipula-
tors will the results be as good in terms of computational efficiency. The efficiency of inverse kinematics rap-
idly degenerates when more than a few of the distance link parameters are nonzero. In fact, the most general
manipulator for which a closed-form solution does exist is a six-DOF robot where the last three DOFs affect
only the orientation of the end-effector, as is the case with the Puma 560 [2].

Below, we compare the computational efficiency of our proposed method to the most efficient solution for the
inverse kinematics of a redundant manipulator presented by Nakamura [4]. Since both methods require calcu-
lation of 1(9), we only compare the additional arithmetic operations required to calculate the inverse kinemat-
ics once J(O) is calculated.

Nakamura presents an inverse kinematic solution for the case of redundant manipulators using the pseudo-in-
verse of the Jacobian matrix. As a function of n, this method requires,

(33n + 112) multiplications/divisions (Eq. 56)

(33n + 64) additions/subtractions

In comparison, our method requires,

13n multiplications/divisions (Eq. 57)
(16n-6) additions/subtractions

Therefore, our method is roughly two and a half times more efficient than the pseudo-inverse method. Table
VII compares the total number of arithmetic operations required for a general 7-DOF and 8-DOF manipulator.
Again, the fuzzy method is significantly more efficient than the pseudo-inverse method.

Table VII. Computational Efficiency

MuitJDiv Add./Sub. Sin/Cos Inv. FunC Sqit "UCP"4

P5601 53 26 10 8 2

p%02 93 64 6 0 0 14j.
7DOF3  498 362 12 0 I 0 F679
7DOF2  246 173 12 0 0 364

8DOF3  561 410 14 0 0

8D0V 2  289 204 14 0 0
1 Closed-form inverse kinematics
2Fuzzy inverse kinematic mapping
31nverse kinematics through pseudo-inverse of Jacobian
4UCP = Units of Computing Power
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6 Conclusion

Calculating exact inverse kinematics in real-time is computationally too burdensome for all but the most sim-
ple kinematic configurations. For a wide class of robot tasks such as teleoperation, however, we do not require

exact inverse kinematics during global positioning and trajectory following. Here, we have presented a method
of calculating inverse kinematics which has been shown to be robust to singular configurations, and is applica-
ble to both redundant and nonredundant manipulators. The inverse kinematic mapping proposed trades off
small tracking error for computational efficiency and robustness, and allows robot redundancy to be exploited
rather than averted. The fuzzy method is much more efficient for redundant manipulators than other currently
available methods and has been shown to be marginally more efficient even for a simple robot where a closed-
form solution to the inverse kinematic problem exists. Furthermore, the method converges quickly in steady

state and produces zero steady state error in position and orientation of the end-effector.
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